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A novel synthetic route is reported for the preparation of steroidal triazoles via intramolecular 1,3-dipolar
cycloaddition of a steroidal 16,17-seco-17-diazo-16-nitrile system. The structures of the products are
established by X-ray and NMR studies. The in vitro antiproliferative activity of the steroidal triazoles
against three tumor cell lines was evaluated.
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The 1,3-dipolar cycloaddition reaction is a powerful synthetic
protocol for the synthesis of five-membered heterocycles via
well-designed intramolecular sequences.1 On the other hand, ste-
roidal C-17 tethered heterocyclic compounds possess high antipro-
liferative activity toward breast and prostate cancer cell lines.2

Steroidal[3,2-c]triazoles possess anti-androgenic activity.3 Several
nonsteroidal cytochrome P450 aromatase inhibitors containing a
triazole ring (such as anastrozole and letrozole), exhibit potent
antiproliferative activity against estrogen receptor positive breast
adenocarcinoma MCF-7 and inhibit the growth of two different
MCF-7 breast tumor xenografts in nude mice.4,5 This inspired us
to synthesize 1,2,3-triazole androgen and estrogen D-ring-fused
derivatives via a 1,3-dipolar cycloaddition reaction, and to evaluate
their antiproliferative activity. We used the 17-oxo-16,17-seco-16-
nitriles 1 and 2, which were synthesized earlier as substrates.6,7

Compounds 1 and 2 were transformed into the corresponding
tosylhydrazones 3 and 4 (Scheme 1). The reactions were carried
out in refluxing ethanol over 2 h to afford hydrazones 3 and 4 in
yields of 86% and 72%, respectively.

Aggarwal et al.8 have reported previously that intermolecular
1,3-dipolar cycloaddition of diazo compounds onto alkenes and al-
kynes led to substituted pyrazoles. In this Letter, we report the syn-
thesis of 1,2,3-triazoles via intramolecular 1,3-dipolar cycloadditions
ll rights reserved.
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of diazo groups, generated in situ from hydrazones 3 and 4, to a nitrile
group. Thus, addition of NaOH in dioxane/H2O, NaBH4 in ethanol, or
LiAlH4 in dioxane, to tosylhydrazones 3 and 4 yielded the sodium
salts 3a and 4a, further heating of which at reflux gave the 17-diazo
compounds 5 and 6. These in situ formed diazo compounds under-
went intramolecular 1,3-dipolar cycloaddition to give the D-ring-
fused triazole derivatives 7 and 8. The structure of triazole 7, which
was previously prepared as a byproduct9 under different reaction
conditions, was established on the basis of spectroscopic data,10

and X-ray analysis11 (Fig. 1), whereas the structure of triazole 8
was established based on detailed spectroscopic data.12

Comprehensive analysis of the one- and two-dimensional NMR
data of 8 including the results of 13C DEPT, 1H–1H COSY, HSQC, and
HMBC (500 MHz) experiments, allowed us to establish the struc-
ture of 8. The strong HMBC correlations between the CH3-18
methyl protons and C-17 (signal at 161.34 ppm) confirmed that
the cycloaddition reaction took place at the C-17 position. The
equally strong HMBC correlations between the NH proton and
the C-16 and C-17 quaternary carbons suggested the symmetrical
triazole structure of 8 in DMSO solution, while according to
X-ray analysis this hydrogen is positioned on N-1.

In the case of compound 8 the benzyl protection was removed
by catalytic hydrogenolysis in the presence of 10% Pd/C, which re-
sulted in the steroidal triazole 913 in a yield of 65%.

The steroidal triazoles 7 and 9 were preliminarily evaluated for
their antiproliferative activity against three human tumor cell



Scheme 1. Reagents and conditions: (i) TsNHNH2, EtOH, reflux, 2 h, 86% of 3, 72% of 4; (ii) NaOH, dioxane/H2O, reflux, 1 h for 7, or 2 h for 8, 55% of 7, and 61% of 8, NaBH4,
EtOH, reflux, 3 h, 65% of 7, 76% of 8, or LiAlH4, dioxane, reflux, 6 h, 69% of 7; (iii) H2, 10% Pd/C, MeOH, CH2Cl2, rt, 45 h, 65%.

Figure 1. ORTEP representation of the X-ray structure of 7.
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lines. Table 1 shows 50% inhibitory concentrations (IC50) of the
tested compounds against human breast adenocarcinoma ER-,
MDA-MB-231, breast adenocarcinoma ER+, MCF-7, prostate cancer
Table 1
IC50 (lM)a values of the steroidal triazole derivatives 7 and 9 and Doxorubicin,b

in vitro, against different cancer cells

Compound MDA-MB-231 MCF-7 PC-3 MRC-5

7 >100 >100 12.27 >100
9 20.24 >100 108.64 >100
Doxorubicin 0.12 0.75 95.61 0.12

a Inhibitory concentrations (IC50) were determined through the use of an estab-
lished SRB method.14

b Doxorubicin (adriamycin) served as reference compound.
PC-3, and normal fetal lung fibroblasts, MRC-5 cells. The results
show that the triazole derivative 7 exhibited significant antiprolif-
erative activity and selectivity against PC-3 cells, being almost
eight times more potent than Doxorubicin. Compound 9 was active
against MDA-MB-231, and was inactive against the MCF-7 and PC-
3 cell lines. Both compounds were nontoxic against healthy MRC-5
cells, in contrast to Doxorubicin, which was extremely toxic
against these cells.

In conclusion, we have developed a very simple and conve-
nient route for the synthesis of a steroidal 16,17-fused 1,2,3-tri-
azole derivatives. This method involves the intramolecular 1,3-
dipolar cycloaddition of a diazo group, generated in situ from
C-17-hydrazones onto a C-16-nitrile group in 16,17-secosteroids.
Triazole 7 showed potent antiproliferative activity against pros-
tate cancer PC-3 cells, and can serve as the basis for obtaining
more active agents against these cells. Compounds 7 and 9 did
not exhibit any cytotoxicity toward normal fetal lung MRC-5
cells.
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